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A self-similar solution for the temperature in a plane semibounded jet  was obtained in [ 1]. The self-similarity 
temperature constant c~ T = 1/2 was found by using the integral conservation condition 

uT udy dy =const, 
o" '\o i 

which in general is not  satisfied (this integral is independent  of  the longitudinal coordinate only on the assumption of  
similarity of  the velocity and temperature profiles at Prandtl numbers close to unity). In this paper self-similar solutions 
for different Prandtl numbers are constructed, and it is shown that the self-similarity constant depends on the Prandtl 
number. 

The problem of  a plane laminar semibounded je t  moving along a solid wall can be written, in the boundary-layer 
approximation,  in the dimensionless form 

Ou @ C, Ozt 0%. Ou 0~, 
u c'V~-x av 0~/' 0x +-g~u = 0 ;  (1) 

or  , v or  1 0"-r (2) 
u--~.c ~- ay = Pr ov "2 ; 

u = v = 0wheny ==0, u = 0  w h e n y ~ o o ;  (3) 

T = 0 wheay = 0, T = 0 whenY --~- ~ ,  (4) 

where x, yR -3/4 are rectangular Cartesian coordinates (x, y are the inner coordinates in the asymptotic expansion in terms 

of  the small parameter  R -~ corresponding to the boundary-layer limit); gt = (L~ , , I ,n /9~ . ) l /~  is an analog of  the 

Reynolds number; uRt, '~. vR--~/~ are the longitudinal and transverse velocity components;  T is the difference between the 

temperatures at the given point  and at infinity; Pr = c~t~,,,/'.,.,s is the Prandtl number. In converting to dimensionless 

form, it was assumed that the scales of  the heat capacity at constant pressure Cpm , the dynamic viscosity Pro' the thermal 

conductivity Xm, the length Lm, the density Pro' the temperature Tin, and the Akatnov invariant 

I m =  pm ral~ m ~ a Hdy  d y  

are prescribed. As a velocity scale we chose 

e I L ~ ~ 1/s V ~ = ~ .  ,~,'Pm ~,) �9 

For  problem (1)-(4) we should impose initial conditions at x = Xo, but  within the scope of this paper we will consider only 

self-similar solutions. For  closure of  the dynamic problem (1), (3), we formulate the Akatnov conservation condition 

.! u ~ udg dy = t. (5) 

As regards the heat problem, it follows from its form that  the obtained solutions of (2), (4) are accurate to a constant 
factor, the value of  which will not  be assigned at presen.t. 

Problem (1)-(5) admits the self-similar solution 

u (z, y) = x-~/~F' ( %  v (x, v) = x-3/~v (n), r (z, y) - -  z~rO ( %  v = qz~ . ;  (6) 

here and henceforth the dash denotes the derivative with respect to r/; F, V,O,  and ~ are self-similar variables. Substituting 
(6) in (1)-(5), we obtain for the dynamic problem 

4F'"  + F " F  + 2 F  '~ = 0, F = F '  = 0 when~] = 0, F'=O whenTI ~ c~; (7) 
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~ FF;~dtl = t, (8) 
0 

and for the heat problem 

O"+Pr O=0wh n.=0, (9) 

and to find the transverse velocity we can use the equation 

�9 V = ( i / 4 ) ( 3 q Y '  - -  F ) .  

The linear homogeneous equation with homogeneous boundary conditions (9) represents a singular boundary-value eigen- 
value problem; the role of  the eigenvalue here is played by the parameter a t "  Problem (9) has probably a denumerable 

set of  solutions. From this set we selected the solution of  positive sign from physical considerations. Numerical calcula- 
tions showed that it was unique. 

Problems (7), (9) are invariant to the transformation 

F--+ C1F, O ---~ C~O, ~1.--~. C-[1~1, (10) 

i.e., instead of  the Akatnov variant (8) we can use for problem (7) the nontriviality condition in the form 

F"  = I when~l = 0, (11) 

and for normalization of  the solution for the temperature we select the condition 

O' = i when T I = 0. (12) 

Thus, using (113) we reduced the boundary-value problem (7), (8) to the Cauchy problem (7), (11). Solving the 
problems (7), (11), (9), (12), we can then, using the invariant properties of  (10), normalize the solution according to (8) 
or in some other way. Problem (7), (11), (9), and (12) was solved numerically for different Prandtl numbers. Figure 1 
shows a family of plots of  O as a function of  7?; the curve numbers correspond to the Prandfl number. The profile of  
F'0?), characterizing the longitudinal velocity (6), is the same as the profile of  the dimensionless temperature at Pr = 1. 
The maximum of  the temperature profile when Pr ~ 0 is shifted towards higher coordinates ~ (i.e., moves away from the 
wall for a f'Red coordinate x). The temperature decreases more slowly with increase in r / (or  y for fixed x) at low than at 
high Prandtl numbers. When Pr >> 1 the temperature profile becomes much "narrower" than the dynamic profile (Pr = 1) 
and, conversely, when Pr * 0 the " th ickness 'o f  the temperature profile tends to infinity. The Akatnov invariant for 
problem (7) and (11) is 

S u ~ udg y = 7 . 4 9 .  
0 tO / 

The value of  this constant will be required if the solution has to be normalized in accordance with .(8). 
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Figure 2 shows the dependence of  the self-similarity temperature constant a T [the eigenvalue of problem (9)] on 

the Prandtl number. It is apparent that  aT ~ const when Pr ~ oo, and a T ~ - ~  when Pr ~ 0. I t  follows from Eqs. (6) 

that when Pr ~ 0 ( a t  ~ - ~  ) the difference in temperatures in the je t  and at infinity decays rapidly (equivalent of  "high" 

thermal conductivity),  and when Pr ~ oo the maximum temperature in the je t  decays independently of the Prandtl  number, 
since in this case a T ~ const. 

We will explain the limit behavior of  solutions of  the problem (7), (11), (9), and (12) in cases of  arbitrarily large 
and arbitrarily small values of  the Prandtl number, in the investigation we will use the ideas and terminology of  perturba- 
tion methods [2]. 

Let 

e = t / P r - + 0 .  (13) 

Then the asymptotic  expansion, associated with the inner limiting process, when 

= "q/6(e) is fixed, 5(e) -, 0 when e + 0, can be constructed in the form (14) 

@(e, ~q) = %(e)@0(~ ) -t- . . . .  ~r(e) = ~0 + . . . .  f ( n )  = Fo6Zg ~ + . . . .  ' (15) 

where only the zero (main) terms of  the expansions are written; 8(e) is a quantity characterizing the scale of  the inner 
variable ~; %(e) is the zero term of  the asymptotic sequence for@(e, ~). It follows from the form of problem (9), (12), 
(7), (11) that 

F o = i /2,  v o = 6 = ~l/a ( i6 )  

Substituting the series (15) in problem (9), (12), we obtain at the limit (13), (14) 

d20o I ~z dOo 
e~ ~ - 8 - ~  + c % ~ 0 o ' 0 o = 0 '  

(17) 
O 'o=1 fo~ ~ = 0 ,  

0 9 = 0  for ~ . o o .  

Figure 3 shows the numerically obtained solution of  the eigenvalue problem (17). I t  follows from the calculations 
that the eigenvalue 0% = -0 .374 .  The problem (17) arising in the zeroth approximation in e satisfies all the boundary 
conditions (at zero and at infinity), i.e., in this case there is no need to construct the outer solution and to effect match- 
ing, and the expansion of  the solutions of  problem (7), (11), (9), (12) in form (15) is uniformly valid for rb 

The dashed lines in Fig. 1 approximate solutions corresponding fo the zeroth approximation of expansion (15). 
It is apparent that when Pr = 2 the agreement of  the exact and approximate solutions is satisfactory, i.e., even at moderately 
high Prandtl numbers we can eliminate explicitly the silnilarity criterion Pr, and for the description of  nonisothermal flow 
we can use problem (17), which does not  include the Prandtl number  (e). 

We now consider the case Pr << 1. Let 

e = Pr--~ O. (18) 

For  the solutions of  problem (7), (11), (9), and (12) we first consider the inner limit, where 

= ~l/A(e.) is fixed, A---~ oowhea ,e-+ O, (19) 

and A(e) is a quanti ty characterizing, the scale of  the outer variable ~. The dynamic problem (7), ( t  1) has an analytic 
solution [1], which tends exponentially to a constant when rt ~ o o  : 

Y = F ,  -b- TST01), F '  :,: TST0] ) when,~ 1 --,- oo (F~ = 4.t6), (20) 

i.e., in Eq. (9) at the outer limit the term containing F '  drops out. The remaining terms of  Eq. (9) will be of  the same 
order if  at the outer limit 19) we put  

A(e) -- ~-~. 
(21) 

Then the expansions associated with the limit (18), (19), (21) can be constructed in the form 

O(~1, e) = ~'~(~)(9~(~) + . . . .  F(n) = t"~ + . . .  (22) 

Substituting expansions (22) and beating (18) - (21) in mind, we obtain the problem in *he zeroth approximation in e 

e~g~ t eg~ 
- -  T F ~  - (90~ --- 0 when ~--~ oc. (23) 

d~ d~ ' 
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The solution of problem (23) is 

~3~0 = C~exp(--  + F~) .  (24) 

The quantities ~ ( e )  in (22) and ~ in (24) can be determined subsequently from the condition for matching the outer 
and inner expansions, 

To construct an expansion that is valid close to the limit ~7 = 0, we formulate an inner limiting process when (25) 
*/is fixed when e ~ 0, and the expansion of the solutions of the problem (9), (12) at the limit (18), (25) has the form 

O(e, ~1) = 0~(~1) + . . . ,  ~r(e) = ~ 8  -1 § . . �9 (26) 

Then, substituting (26) in problem (9), (12) and having the def'mitions (18), (25) in mind, we obtain the problem in the 
zeroth approximation in e 

O~, = ~z~F'O~, O~ = 0, O~. = t w h e n  ~1 ~ 0, (27)  

We note that in the formulation of the inner limiting process (18), (25) and the construction of the asymptotic expansion 
(26) we were guided by the fact that: 1) the zeroth-approximation problem contains the eigenvalue c~ ;  2) the limit (18), 
(25) is "characteristic" (the boundary-layer limit [2]). 

When ~7 ~ ~ problem (27) [see Eq. (20)] has the obvious asymptotic solution 

O~ = Coo + Ca~l q-TST(~). (28) 

It follows from the form of the solution at the outer limit (24) that in Eq. (28) we must put C 3 = 0. Thus, for the 
problem at the inner limit (27) we can impose the condition 

O" = 0 when ~1-+ oo. (29) 

Problem (27), (29) is an eigenvalue problem. Figure 3 shows the numerically calculated function O~ of ~. When r~ ~ 0% 

O~ = 2.94. The eigenvalue from calculation is a ~  = -0.125. Matching the inner and outer expansions at a limit inter- 

mediate between the inner and outer we can obtain for the outer expansion 

~ ( s )  = 1, ( ~  = Coo = 2.94. 

Adding the outer and inner expansions and subtracting the common part, we obtain an approximation uniformly valid in 77 

F / k 4 "1 
o(8, ~3)~-o** (q )+  C , [ e x p l - - - ~ - F ~ e q  ) - t]. (30) 

The dashed lines in Fig. 1 show the approximate solution when Pr = 0.01. The satisfactory agreement with the exact 
solution is obvious, Thus, at low Prandfl numbers too the similarity criterion Pr can be eliminated and Eq. (30) will be 
valid for description of the temperature profile. 

For numerical integration we used the Runge-Kutta  method. The eigenvalues were selected from the condition 
that the temperature at infinity [or its derivative for problem (27), (29)] is zero by the segment bisection method. 
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